Licence Physique-Chimie et Applications

Mention Sciences Physiques et Chimiques-L3

Electromagnétisme de la matière Partiel (durée *1h30*)

I. Cylindre diélectrique polarisé (6 pts)

Sous l'action d'un champ électrique appliqué E_a uniforme, un barreau cylindrique (rayon a, longueur l>>a) acquiert une polarisation volumique P uniforme selon Ox, et ceci perpendiculairement à l'axe Oz du cylindre. On se propose de calculer le champ électrique E_{in} , à l'intérieur, et E_{ex} à l'extérieur du milieu, par la méthode du champ auxiliaire E^* .

- 1. Calculer E^* et en déduire les valeurs de E en fonction de P.
- 2. Le matériau est un conducteur. Exprimer **P** en fonction du champ appliqué. Quelle est la distribution de charge du conducteur ? Que vaut le moment dipolaire électrique du barreau ?
- 3. Déterminer les composantes de E à l'extérieur du barreau en fonction de E_a , a et des coordonnées cylindriques r et φ . Déduire les valeurs des composantes du déplacement électrique D en tout point.

II. Condensateur à diélectrique. (5 pts)

Une lame d'un milieu diélectrique LHI, caractérisé par une permittivité absolue ε acquiert, sous l'effet d'un champ E, appliqué perpendiculairement à ses faces (Fig.1), une polarisation volumique P uniforme.

1. Quelle est la distribution de charges équivalentes à un tel état de polarisation ? Calculer en fonction de E_a , ε_0 et ε , les valeurs du champ électrique E, du déplacement électrique D et de la polarisation P en tout point intérieur ou extérieur à la lame.

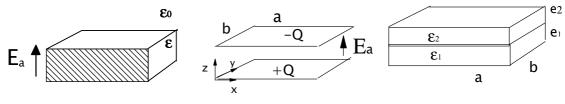


Figure 1 Figure 2 Figure 3

2. Les deux armatures planes rectangulaires d'un condensateur à vide (Fig.2) sont espacées de e et sont initialement chargées (Q > 0 et -Q). On introduit entre ces armatures maintenues isolées, une lame matérielle qui emplit totalement le volume inter-armatures. On néglige tout effet de bord. On choisit la direction Oz perpendiculaire aux armatures; on note e la distance inter-armatures, et a et b les côtés respectivement parallèles à Ox et Oy.

La lame introduite est constituée de deux milieux matériels LHI superposés en deux lames d'épaisseurs respectives e_1 et e_2 (Fig.3) caractérisés par leur permittivité ε_l et ε_2 . Calculer E et D dans chaque couche et la nouvelle valeur de la capacité. .../...

III. Lame infinie à faces parallèles contenant des molécules polaires orientables. (Barème indicatif : 9 pts)

On considère une lame infinie à faces parallèles constituée d'un milieu l.h.i., de constante diélectrique relative $\mathbf{\mathcal{E}}_r$. Le milieu est *amorphe* et l'épaisseur de la lame est très supérieure à la distance inter-atomique. On introduit dans ce milieu un ensemble de molécules polaires orientables, de moment dipolaire p_0 , en densité N suffisamment faible pour ne pas perturber la constante diélectrique $\mathbf{\mathcal{E}}_r$. Ces molécules sont sans interaction entre elles et sont en présence d'un champ local que l'on exprimera dans le modèle de Lorentz.

1) Rappeler le *principe* du calcul du champ local \mathbf{E}_1 dans le modèle de Lorentz et démontrez son expression en fonction du champ électrique macroscopique \mathbf{E} et de la polarisation \mathbf{P} .

Pour la suite, on se place dans le cas limite des hautes températures pour ce qui concerne la polarisation d'orientation.

- 2) Définir la polarisabilité effective α_{or} des molécules polarisables.
- 3) Ecrire le vecteur polarisation comme la somme d'un terme en \mathbf{E} et d'un terme en \mathbf{E}_{l} .
- 4) En déduire l'expression de la polarisation P en fonction de E, N, ε_r , ε_0 et α_{or} .
- 5) Calculer la nouvelle constante diélectrique relative $(\mathcal{E}_r)_{total}$ du milieu prenant en compte les molécules polaires. $(\mathcal{E}_r)_{total}$ sera exprimée en fonction de N, \mathcal{E}_r et α_{or} . Sachant que N $\alpha_{or} << 1$, donner l'expression de $(\mathcal{E}_r)_{total}$ au premier ordre en $(N \ \alpha_{or})$ en fonction de N, \mathcal{E}_r et α_{or} .
- 6) On impose un champ électrique extérieur \mathbf{E}_{ex} perpendiculaire aux faces de la lame, dans le vide. Donner l'expression du champ électrique \mathbf{E}_{in} dans le milieu complet en fonction de \mathbf{E}_{ex} , N, p₀, ϵ_r , ϵ_0 , kT.